



Herring Milt: A Potential Functional Ingredient for Obesity and Type-2 Diabetes

Yanwen Wang, PhD Senior Research Officer (NRC) Jacques Gagnon, PhD Senior Research Scientist (VALORES)

> NCE Blue Legasea Webina May 27, 2021



National Research Conseil national de Council Canada recherches Canada





#### **Metabolic syndrome**



🕸 VALORĒS

https://www.metabolicsyndromecanada.ca/about-metabolic-syndrome







- Heart disease has remained the number one cause of death globally for the last 20 years. The number of deaths increased by > 2 million since 2000 to nearly 9 million in 2019.
- Currently, more than 1 billion adults are overweight of which at least 300 million are clinically obese.
- Childhood obesity is already epidemic in some areas and on the rise in others.
- Deaths from diabetes increased by 70% globally between 2000 and 2019.

WHO, 2020





#### Valorization of marine biomass and marine-based byproducts

- > Collection, preservation and processing
- Extraction and fractionation
- > Chemical analysis/characterization
- > In vitro cell based assays
  - Glucose-stimulated insulin release in pancreatic beta cells
  - Glucose update in peripheral tissues (muscle, fat cells)
  - Anti-obesity activity
  - Anti-inflammation
  - Antioxidant activity
  - Neuroprotection/ anti-ageing



## In vitro screening of marine-based extracts for glucose-stimulated insulin secretion

- INS-1E rat insulinoma cells were used as the *in vitro* assay model.
- Cytotoxicity was measured using the MTT assay.
- Extracts were screened for glucose stimulated insulin secretion (GSIS) using ELISA kit.
- 82 extracts/samples were tested.







## The 1<sup>st</sup> screening

#### The first screening conditions

- 3 doses (10, 50, 100  $\mu$ g/mL) of each product
- GSIS at 25 mM of glucose

#### <u>Results</u>

- 10 : Toxic, not tested
- 38:0-20% of increase
- $32 : \geq 20\%$  of increase
- 2 :Toxic, but have  $\geq$  20% of increase





#### The 2<sup>nd</sup> screening

#### **Screening conditions**

32 candidates (>20% increase of GSIS) were tested at 2 doses (50, 100  $\mu$ g/ml) GSIS at 5.5, 11, and 25 mM of glucose, respectively 40% increase of GSIS was set as the cut-off.

#### **Results**

| Number of<br>Sample | ≥ 40 % increase in<br>insulin secretion | Number of Sample | ≥ 40 % increase in<br>insulin secretion |
|---------------------|-----------------------------------------|------------------|-----------------------------------------|
| 1                   | 1-2W                                    | 8                | 1-5 W                                   |
| 2                   | 1-5A                                    | 9                | 1-5 H                                   |
| 3                   | 1-5 M                                   | 10               | 3-2 W                                   |
| 4                   | 2-1 P+ A                                | 11               | 3-3 R                                   |
| 5                   | 2-4 M                                   | 12               | 3-3 f ®                                 |
| 6                   | 1-4 f ®                                 | 13               | 5-3 P                                   |
| 7                   | 1-4 R                                   |                  |                                         |





# The 3<sup>rd</sup> screening on fractionation prepared from the lead candidates in the 2<sup>nd</sup> screening

| Sample code | Origin                         | Form       |
|-------------|--------------------------------|------------|
| YW-0046     | Shrimp oil                     | Liquid     |
| 1-2 W       | Sea cucumber - internal organs | Dry powder |
| 1-5 W       | Sea cucumber - dry flower      | Dry powder |
| 1-5 H       | Sea cucumber - dry flower      | Dry powder |
|             |                                |            |
| 1-5 A       | Sea cucumber - dry flower      | Dry powder |
| 1-5 M       | Sea cucumber - dry flower      | Dry powder |
| 2-1 P+A     | Herring - milt / hydrolysis    | Dry powder |
| 3-2 W       | Crab - hepatopancreas          | Dry powder |
| 5-3 P       | Sardine - cutting / hydrolysis | Dry powder |



## Preparation of herring milt protein hydrolysate (HPH)



## **Diet composition**

| Ingredient <sup>#</sup>  | LFC  | HFC  | HPH15 | HPH35 | НРН70 |  |
|--------------------------|------|------|-------|-------|-------|--|
| Diet composition         |      |      |       |       |       |  |
| Casein (80 Mesh)         | 200  | 200  | 170   | 130   | 60    |  |
| L-Cystine                | 3    | 3    | 3     | 3     | 3     |  |
| Corn Starch              | 315  | 0    | 0     | 0     | 0     |  |
| Maltodextrin 10          | 35   | 125  | 125   | 125   | 125   |  |
| Sucrose                  | 350  | 68.8 | 68.8  | 68.8  | 68.8  |  |
| Herring Milt Hydrolysate | 0    | 0.00 | 42.4  | 98.9  | 197.7 |  |
| Cellulose, BW200         | 50   | 50   | 50    | 50    | 50    |  |
| Lard (96%)               | 20   | 245  | 240.4 | 234.3 | 223.6 |  |
| Soybean Oil              | 25   | 25   | 25    | 25    | 25    |  |
| Mineral Mix S10026       | 10   | 10   | 10    | 10    | 10    |  |
| DiCalcium Phosphate      | 13   | 13   | 13    | 13    | 13    |  |
| Calcium Carbonate        | 5.5  | 5.5  | 5.5   | 5.5   | 5.5   |  |
| Potassium Citrate, 1 H2O | 16.5 | 16.5 | 16.5  | 16.5  | 16.5  |  |
| Vitamin Mix V10001       | 10   | 10   | 10    | 10    | 10    |  |
| Choline Bitartrate       | 2    | 2    | 2     | 2     | 2     |  |
| FD&C Blue Dye 1          | 0.05 | 0.05 | 0.05  | 0.05  | 0.05  |  |
| Total (g)                | 1055 | 774  | 782   | 792   | 810   |  |
| Calorie information      |      |      |       |       |       |  |
| Protein (% kcal)         | 20   | 20   | 20    | 20    | 20    |  |
| Fat (% kcal)             | 10   | 60   | 60    | 60    | 60    |  |
| Carbohydrate (% kcal)    | 70   | 20   | 20    | 20    | 20    |  |
| Energy density (kcal/g)  | 3.82 | 5.21 | 5.21  | 5.21  | 5.21  |  |



## Features of type 2 diabetes



- Elevation of blood glucose
- Elevation of blood insulin and leptin
- Increase of blood free fatty acids, cholesterol and triglycerides
- Decrease of blood adiponectin





#### **Experimental design**







### **Body weight**



<sup>#</sup>Compared to HFC, P < 0.0001; <sup>a,b</sup>values labeled with different letters differ, p < 0.05

🕸 VALORĒS



#### **Food intake**



**VALORĒS** 



## Semi-fasting (4-6 hr) blood glucose



#### Oral glucose tolerance during week 8 of treatment



## Area under the curve (AUC) of oral glucose tolerance





#### Fasting blood insulin and leptin



#### **NRC**·CNRC

19

## Fasting blood glucose (FBG) and total cholesterol



**NRC**·CNRC

20

## Homeostasis model assessment of insulin resistance (HOMA-IR) and $\beta$ -cell function (HOMA- $\beta$ )



**NRC** CNRC

VALORES

#### **Blood adiponectin and free fatty acid (FFA)**

|                           | LFC          | HFC                      | HPH15       | НРН35       | НРН70       |
|---------------------------|--------------|--------------------------|-------------|-------------|-------------|
| Serum adiponectin (ng/mL) | 10.66 ± 0.31 | 9.79 ± 0.26 <sup>#</sup> | 8.84 ± 0.36 | 9.95 ± 0.22 | 8.99 ± 0.40 |
| FFA (mmol/mL)             | 0.13 ± 0.01  | 0.10 ± 0.01              | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.09 ± 0.01 |





#### Take home message

## HPH improves insulin resistance and glucose intolerance in DIO mice

The effect might be a result of lowering weight gain, improve pancreatic beta cell function and/or peripheral tissue insulin sensitivity

Further studies are warranted to determine the responsible components (protein, peptides, AAs, FAs, antioxidants, etc.) and the underlying mechanisms





#### Acknowledgements

Dr. Sandhya Nair Dr. Moumita Roy Ms. Shelly (Yu) Sha Ms. Danica Albert Dr. Ludovic Tripoteau Mr. Claude Pelletier Dr. Junzeng Zhang Dr. Steve Ewart Dr. Vanya Ewart



#### **Funding Supports**





National Research Council Canada Conseil national de recherches Canada





## Thank You

#### **Contacts:**

Yanwen Wang Senior research officer National Research Council of Canada Charlottetown, PE, Canada C1A 4P3 <u>Yanwen.wang@nrc.ca</u> (902) 566-7953 Jacques Gagnon,

Senior research scientist

VALORĒS

Shippagan, NB, Canada E8S 1J2

Jacques.gagnon@umoncton.ca

(506) 336-6600





## Follow-up on herring milt

#### **Business**



Sébastien Haché Director <u>www.valores.ca</u> Robert G. Landry Coordinator Communication & Marketing



#### Communication



